

Advanced Artificial Intelligence

Dr. Rastgoo

2022

Advanced Artificial Intelligence, Dr. Rastgoo

s)
Deep Learning (DL)

Generative models

	Artificial Intelligence	Artificial Intelligence (AI)
	Machine Learning Neural	Machine Learning (ML)
	Neural Networks	Neural Networks (NNs)
	Deep Learning	Deep Learning (DL)

Part 2: Generative Adversarial Network (GAN)

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

- GANs introduce the concept of adversarial learning, as they lie in the rivalry between two neural networks.
- These techniques have enabled researchers to create realistic-looking but entirely computer generated photos of people's faces.
- ➤ They have also allowed the creation of controversial "deepfake" videos.
- > Actually, GANs can be used to imitate any data distribution (image, text, sound, etc.).

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

- > An example of GANs' results from 2018 is given in below figure (Figure 1).
- > These images are fake yet very realistic.
- ➤ The generation of these fictional celebrity portraits, from the database of real portraits Celeba-HQ composed of 30,000 images, took 19 days. The generated images have a size of 1024×1024.

Figure 1

Advanced Artificial Intelligence, Dr. Rastgoo

Advanced Artificial Intelligence, Dr. Rastgoo

Advanced Artificial Intelligence, Dr. Rastgoo

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

Artificial Intelligence (AI)

Machine Learning (ML)

Neural Networks (NNs)

Deep Learning (DL)

Stage-I images

images

Synthesized image

This bird is black with green and has a very short beak

images

Stage-II images

Artificial Intelligence (AI)

Machine Learning (ML)

Neural Networks (NNs)

Deep Learning (DL)

Introduction

(c)

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

How do GANs work?

- Generative adversarial networks (GANs) are a generative model with implicit density estimation, part of unsupervised learning and are using two neural networks.
- Thus, we understand the terms "generative" and "networks" in "generative adversarial networks".

- The principle is a two-player game: a neural network called the generator and a neural network called the discriminator.
- ➤ The generator tries to fool the discriminator by generating real-looking images while the discriminator tries to distinguish between real and fake images.
- At the bottom left of Figure 2, we can see that our generator samples from a simple distribution: random noise.
- > The generator can be interpreted as an artist and the discriminator as an art critic. (See Figure 3)

- During training, the generator progressively becomes better at creating images that look real, while the discriminator becomes better at telling them apart.
- The process reaches equilibrium when the discriminator can no longer distinguish real from fake images. See Figure 4.
- Thus, if the discriminator is well trained and the generator manages to generate real-looking images that fool the discriminator, then we have a good generative model:

We are generating images that look like the training set!

Advanced Artificial Intelligence, Dr. Rastgoo

- > After this training phase, we only need the generator to sample new (false) realistic data.
- > We no longer need the discriminator.
- Note that the random noise guarantees that the generator does not always produce the same image (which can fool the discriminator).
- Note that at the beginning of the training, the generator only generates a random noise that does not look like the training data.

- The generator G and the discriminator D are jointly trained in a two-player minimax game formulation.
- > The minimax objective function is:

$$\min_{\substack{\theta_g \quad \theta_d}} \max_{\substack{\theta_d \quad \theta_d \quad \theta_d}} \left[\mathbb{E}_{\mathbf{X} \sim p_{\text{data}}} \log D_{\theta_d}(\mathbf{X}) + \mathbb{E}_{\mathbf{Z} \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \right]$$
parameters of *G* parameters of *D*

- ▶ By definition, D outputs the likelihood of real image in interval [0, 1]:
- \blacktriangleright D(x) equals 1 (or is close to 1) if D considers that x is a real data,
- \blacktriangleright D(x) equals 0 (or is close to 0) if D considers that x is a fake data (e.g. a generated data).
- We can prove that, at the equilibrium, D outputs 1/2 everywhere because D has no idea how to distinguish fake generated data from real data.

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

- > Because $x \sim p_{data}$, x is a real data.
- > By definition of G, G(z) is a fake generated data.
- ➢ For example, x would be a real-life image of a cat and G(z) would be a fake generated image of a cat.
- > Thus, D(x) is the output of the discriminator for a real input x and D(G(z)) is the output of the discriminator for a fake generated data G(z).

- > The two-player minimax game from Equation (1) was written such that:
- > The discriminator D tries to distinguish between real data x and fake data G(z).
- ➤ More precisely, the discriminator D plays with θ_d (θ_g being fixed) to maximize the objective function such that D(x) is close to 1 (x being real data) and such that D(G(z)) is close to 0 (a generated data is detected as false).

- > The generator G tries to fool the discriminator D into thinking that its fake generated data is real.
- ➤ More precisely, the generator G plays with θ_g (θ_d being fixed) to minimize the objective function such that D(G(z)) is close to 1 (a false generated data is detected as true by the discriminator).

Although we are in unsupervised learning (the data is not labeled), we choose that the data generated by G has a 0 label for false (regardless of what the discriminator returns) and the real learning data has a 1 label for true. We can thus define a loss function.

	Artificial celligence	Artificial Intelligence (AI)
Lei	Aachine earning Neural	Machine Learning (ML)
	Neural Networks Deep Learning	Neural Networks (NNs)
Let		Deep Learning (DL)

Why are GANs so interesting?

Generative models have several very useful applications: colorization, super-resolution, generation of artworks, etc. In general, the advantage of using a simulated model over the real model is that the computation can be faster.

Advanced Artificial Intelligence, Dr. Rastgoo

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)
Deep Learning	

Why are GANs so interesting?

- ➢ One example is given Figure 5.
- These real images are transposed into realistic fictional images or vice versa with the CycleGAN developed by researchers at the University of Berkeley.
- The concept, called image-to-image translation, is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs.

Why are GANs so interesting?

edges to photo

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neurai	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

GAN Problems

- > Many GAN models suffer the following major problems:
- > Non-convergence: The model parameters oscillate, destabilize and never converge,
- > Mode collapse: The generator collapses which produces limited varieties of samples,
- Diminished gradient: The discriminator gets too successful that the generator gradient vanishes and learns nothing,
- > Unbalance between the generator and discriminator causing overfitting,
- ➢ Highly sensitive to the hyperparameter selections.

Mode

- ➢ Real-life data distributions are multimodal.
- For example, in MNIST, there are 10 major modes from digit '0' to digit '9'. The samples below are generated by two different GANs.
- The top row produces all 10 modes while the second row creates a single mode only (the digit "6").
- This problem is called mode collapse when only a few modes of data are generated.

8434484877409188694511286945 1494734310919980035966000359660 5473 @OSOF#IS9108882810888 101337300003379061410129614 33411492178010557770818327708 1369 19452889 20248128 202481 1424 4097134982035085429250854 ままししししししししょりょうちょうちょうしょうちょうちょう 66666666 666666 . # しししししししし ひかかかかかか # しししししししし ひかかかかかか ,Ê ****** # しししししししし かかかかかかかかかかかか *ŧ いいいいいいいい* ゟゟゟゟゟゟゟゟゟゟゟゟ 1 *ヸヸ*レレレレレレレレ かかかかかかかかかかかか # しししししししし ちちちちちち 6 6 6 6 6 1 10k steps 50K steps 100k steps 20k steps

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

Nash equilibrium

- ➤ GAN is based on the zero-sum non-cooperative game.
- ➢ In short, if one wins the other loses.
- A zero-sum game is also called minimax. Your opponent wants to maximize its actions and your actions are to minimize them.
- In game theory, the GAN model converges when the discriminator and the generator reach a Nash equilibrium.
- ➤ This is the optimal point for the minimax equation below.

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_r(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$$

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

Nash equilibrium

- The Nash equilibrium refers to a scenario in which there exists no motivation for players to stray from their initial strategy alone.
- Consider two player A and B which control the value of x and y, respectively.
- > Player A wants to maximize the value xy while B wants to minimize it.

$$\min_{\mathbf{B}} \max_{\mathbf{A}} V(D, G) = xy$$

The Nash equilibrium is x=y=0. This is the state where the change of mind of a single player will not improve the result. Let's see whether we can find the Nash equilibrium easily using gradient descent.

Nash equilibrium

> We update the parameters x and y based on the gradient of the value function V (α is the learning rate).

$$\Delta x = \alpha \frac{\partial(xy)}{\partial(x)}$$
$$\Delta y = -\alpha \frac{\partial(xy)}{\partial(y)}$$

When we plot x, y, and xy against the training iterations, we realize our solution does not converge.

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

Nash equilibrium

If we increase the learning rate or train the model longer, we can see the parameters x, y is unstable with big swings.

Advanced Artificial Intelligence, Dr. Rastgoo

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

Nash equilibrium

- Our example is an excellent showcase that some cost functions will not converge with gradient descent, in particular for a non-convex game.
- We can also view this issue in an intuitive way: your opponent always countermeasures your actions which makes the models harder to converge.
- Cost functions may not converge using gradient descent in a minimax game.

Generative model with KL-Divergence

- Our example is an excellent showcase that some cost functions will not converge with gradient descent, in particular for a non-convex game.
- We can also view this issue in an intuitive way: your opponent always countermeasures your actions which makes the models harder to converge.
- Cost functions may not converge using gradient descent in a minimax game.

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

Why mode collapse in GAN?

- > Mode collapse is one of the hardest problems to solve in GAN.
- > A complete collapse is not common but a partial collapse happens often.
- > The images below with the same underlined color look similar and the mode starts collapsing.

Why mode collapse in GAN?

Let's see how it may occur. The objective of the GAN generator is to create images that can fool the discriminator D the most.

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)$$

But let's consider one extreme case where G is trained extensively without updates to D. The generated images will converge to find the optimal image x* that fool D the most, the most realistic image from the discriminator perspective. In this extreme, x* will be independent of z.

$$x^* = argmax_x D(x)$$

This is bad news. The mode collapses to a single point. The gradient associated with z approaches zero.

$$\frac{\partial J}{\partial z} \approx 0$$

e (AI)
Machine Learning (ML)
Neural Networks (NNs)
Deep Learning (DL)

Why mode collapse in GAN?

- But mode collapse is not all bad news. In style transfer using GAN, we are happy to convert one image to just a good one, rather than finding all variants. Indeed, the specialization in the partial mode collapse sometimes creates higher quality images.
- > But mode collapse remains one of the most important issues to be solved for GAN.

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

Hyperparameters & training

- No cost functions will work without good hyperparameters and tune them takes time and a lot of patience.
- > New cost functions may introduce hyperparameter(s) that has sensitive performance.
- Hyperparameter tuning needs patience. No cost functions will work without spending time on the hyperparameter tuning.

Balance between the discriminator and generator

- ➤ The non-convergence and mode collapse are often explained as an imbalance between the discriminator and the generator.
- > The obvious solution is to balance their training to avoid overfitting.
- ➢ However, very few progress has made but not because of the lack of trying.
- Some researchers believe that this is not a feasible or desirable goal since a good discriminator gives good feedback.
- Some of the attention is therefore shifted for cost functions with non-vanishing gradients instead.

Artificial Intelligence	Artificial Intelligence (AI)
Machine Learning Neural	Machine Learning (ML)
Neural Networks	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)

Cost v.s. Image quality

- In a discriminative model, the loss measures the accuracy of the prediction and we use it to monitor the progress of the training.
- > However, the loss in GAN measures how well we are doing compared with our opponent.
- > Often, the generator cost increases but the image quality is actually improving.
- > We fall back to examine the generated images manually to verify the progress.
- This makes model comparison harder which leads to difficulties in picking the best model in a single run. It also complicates the tuning process.

Artificial Intelligence Machine Learning Networks		Artificial Intelligence (AI)			
		Machine Learning (ML)			
		Neural Networks (NNs)			
Deep Learning	Deep Learning	leep arning	ng	ep hing	Deep Learning (DL)

Conclusion

- ➢ GANs' applications have increased rapidly, in particular for images.
- ➤ GANs can be very interesting for companies.
- For example, GANs can generate realistic images of new medical images and image-to-image translation can help designers draw and be more creative.
- Moreover, GANs can be used for data augmentation when we only have one hundred images and we wish to have more.

Artificial Intelligence	Artificial Intelligence (AI)
Learning	Machine Learning (ML)
	Neural Networks (NNs)
Deep Learning	Deep Learning (DL)
	Machine Learning Neural Networks

Conclusion

- GANs have also been developed for binary outputs (sick or not) or discrete outputs (rounded blood pressure, rounded weight...).
- > Benefits from this new research on tabular data are numerous, in particular for privacy purposes.
- For example, instead of sending confidential data from Excel sheets, hospitals can send fake realistic data (that keeps the correlation between the features) to their partners.

g (DL)
1

