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Generative models
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Part 2: Generative 
Adversarial Network (GAN)

3

Neural Networks (NNs)

Machine Learning (ML)

Deep Learning (DL)

Artificial Intelligence (AI)

Advanced Artificial Intelligence, Dr. Rastgoo 3



Introduction

➢ GANs introduce the concept of adversarial learning, as they lie in the rivalry between two neural
networks.

➢ These techniques have enabled researchers to create realistic-looking but entirely computer
generated photos of people’s faces.

➢ They have also allowed the creation of controversial “deepfake” videos.

➢ Actually, GANs can be used to imitate any data distribution (image, text, sound, etc.).
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Introduction

➢ An example of GANs’ results from 2018 is given in below figure (Figure 1).

➢ These images are fake yet very realistic.
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➢ The generation of these fictional celebrity
portraits, from the database of real portraits
Celeba-HQ composed of 30,000 images, took 19
days. The generated images have a size of
1024×1024.

Figure 1
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How do GANs work?

➢ Generative adversarial networks (GANs) are a generative model with implicit density
estimation, part of unsupervised learning and are using two neural networks.

➢ Thus, we understand the terms “generative” and “networks” in “generative adversarial
networks”.
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The principle: generator vs discriminator

➢ The principle is a two-player game: a neural network called the generator and a neural network
called the discriminator.

➢ The generator tries to fool the discriminator by generating real-looking images while the
discriminator tries to distinguish between real and fake images.

➢ At the bottom left of Figure 2, we can see that our generator samples from a simple distribution:
random noise.

➢ The generator can be interpreted as an artist and the discriminator as an art critic. (See Figure 3)
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The principle: generator vs discriminator
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Figure 2



The principle: generator vs discriminator
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Figure 3



The principle: generator vs discriminator

➢ During training, the generator progressively becomes better at creating images that look real,
while the discriminator becomes better at telling them apart.

➢ The process reaches equilibrium when the discriminator can no longer distinguish real from fake
images. See Figure 4.

➢ Thus, if the discriminator is well trained and the generator manages to generate real-looking
images that fool the discriminator, then we have a good generative model:

We are generating images that look like the training set!
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The principle: generator vs discriminator
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Figure 4



The principle: generator vs discriminator

➢ After this training phase, we only need the generator to sample new (false) realistic data.

➢ We no longer need the discriminator.

➢ Note that the random noise guarantees that the generator does not always produce the same
image (which can fool the discriminator).

➢ Note that at the beginning of the training, the generator only generates a random noise that does
not look like the training data.
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Mathematically: The two-player minimax game

➢ The generator G and the discriminator D are jointly trained in a two-player minimax game
formulation.

➢ The minimax objective function is:
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Mathematically: The two-player minimax game

➢ By definition, D outputs the likelihood of real image in interval [0, 1]:
➢ • D(x) equals 1 (or is close to 1) if D considers that x is a real data,
➢ • D(x) equals 0 (or is close to 0) if D considers that x is a fake data (e.g. a generated data).

➢ We can prove that, at the equilibrium, D outputs 1/2 everywhere because D has no idea how to
distinguish fake generated data from real data.
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Mathematically: The two-player minimax game

➢ Because , x is a real data.

➢ By definition of G, G(z) is a fake generated data.

➢ For example, x would be a real-life image of a cat and G(z) would be a fake generated image of a
cat.

➢ Thus, D(x) is the output of the discriminator for a real input x and D(G(z)) is the output of the
discriminator for a fake generated data G(z).
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Mathematically: The two-player minimax game

➢ The two-player minimax game from Equation (1) was written such that:

➢ The discriminator D tries to distinguish between real data x and fake data G(z).

➢ More precisely, the discriminator D plays with θ_d (θ_g being fixed) to maximize the objective
function such that D(x) is close to 1 (x being real data) and such that D(G(z)) is close to 0 (a
generated data is detected as false).
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Mathematically: The two-player minimax game

➢ The generator G tries to fool the discriminator D into thinking that its fake generated data is real.

➢ More precisely, the generator G plays with θ_g (θ_d being fixed) to minimize the objective
function such that D(G(z)) is close to 1 (a false generated data is detected as true by the
discriminator).
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Mathematically: The two-player minimax game

➢ Although we are in unsupervised learning (the data is not labeled), we choose that the data
generated by G has a 0 label for false (regardless of what the discriminator returns) and the real
learning data has a 1 label for true. We can thus define a loss function.
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Why are GANs so interesting?

➢ Generative models have several very useful applications: colorization, super-resolution,
generation of artworks, etc. In general, the advantage of using a simulated model over the real
model is that the computation can be faster.
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Figure 5



Why are GANs so interesting?

➢ One example is given Figure 5.

➢ These real images are transposed into realistic fictional images — or vice versa — with the
CycleGAN developed by researchers at the University of Berkeley.

➢ The concept, called image-to-image translation, is a class of vision and graphics problems where
the goal is to learn the mapping between an input image and an output image using a training
set of aligned image pairs.
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Why are GANs so interesting?
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GAN Problems

➢ Many GAN models suffer the following major problems:

➢ Non-convergence: The model parameters oscillate, destabilize and never converge,
➢ Mode collapse: The generator collapses which produces limited varieties of samples,
➢ Diminished gradient: The discriminator gets too successful that the generator gradient vanishes

and learns nothing,
➢ Unbalance between the generator and discriminator causing overfitting,
➢ Highly sensitive to the hyperparameter selections.
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Mode

➢ Real-life data distributions are multimodal.

➢ For example, in MNIST, there are 10 major
modes from digit ‘0’ to digit ‘9’. The
samples below are generated by two
different GANs.

➢ The top row produces all 10 modes while
the second row creates a single mode only
(the digit “6”).

➢ This problem is called mode collapse when
only a few modes of data are generated.
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Nash equilibrium

➢ GAN is based on the zero-sum non-cooperative game.

➢ In short, if one wins the other loses.

➢ A zero-sum game is also called minimax. Your opponent wants to maximize its actions and your
actions are to minimize them.

➢ In game theory, the GAN model converges when the discriminator and the generator reach a
Nash equilibrium.

➢ This is the optimal point for the minimax equation below.
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Nash equilibrium

➢ The Nash equilibrium refers to a scenario in which there exists no motivation for players to stray
from their initial strategy alone.

➢ Consider two player A and B which control the value of x and y, respectively.

➢ Player A wants to maximize the value xy while B wants to minimize it.

➢ The Nash equilibrium is x=y=0. This is the state where the change of mind of a single player
will not improve the result. Let’s see whether we can find the Nash equilibrium easily using
gradient descent.
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Nash equilibrium

➢ We update the parameters x and y based on the gradient of the value function V (α is the
learning rate).
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➢ When we plot x, y, and xy against the training iterations, 
we realize our solution does not converge.



Nash equilibrium

➢ If we increase the learning rate or train the model longer, we can see the parameters x, y is
unstable with big swings.
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Nash equilibrium

➢ Our example is an excellent showcase that some cost functions will not converge with gradient
descent, in particular for a non-convex game.

➢ We can also view this issue in an intuitive way: your opponent always countermeasures your
actions which makes the models harder to converge.

➢ Cost functions may not converge using gradient descent in a minimax game.
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Generative model with KL-Divergence

➢ Our example is an excellent showcase that some cost functions will not converge with gradient
descent, in particular for a non-convex game.

➢ We can also view this issue in an intuitive way: your opponent always countermeasures your
actions which makes the models harder to converge.

➢ Cost functions may not converge using gradient descent in a minimax game.
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Why mode collapse in GAN?

➢ Mode collapse is one of the hardest problems to solve in GAN.

➢ A complete collapse is not common but a partial collapse happens often.

➢ The images below with the same underlined color look similar and the mode starts collapsing.
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Why mode collapse in GAN?

➢ Let’s see how it may occur. The objective of the GAN generator is to create images that can fool
the discriminator D the most.

➢ But let’s consider one extreme case where G is trained extensively without updates to D. The
generated images will converge to find the optimal image x* that fool D the most, the most
realistic image from the discriminator perspective. In this extreme, x* will be independent of z.

➢ This is bad news. The mode collapses to a single point. The gradient associated with z
approaches zero.
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Why mode collapse in GAN?

➢ But mode collapse is not all bad news. In style transfer using GAN, we are happy to convert one
image to just a good one, rather than finding all variants. Indeed, the specialization in the partial
mode collapse sometimes creates higher quality images.

➢ But mode collapse remains one of the most important issues to be solved for GAN.
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Hyperparameters & training

➢ No cost functions will work without good hyperparameters and tune them takes time and a lot of
patience.

➢ New cost functions may introduce hyperparameter(s) that has sensitive performance.

➢ Hyperparameter tuning needs patience. No cost functions will work without spending time on the
hyperparameter tuning.
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Balance between the discriminator and generator

➢ The non-convergence and mode collapse are often explained as an imbalance between the
discriminator and the generator.

➢ The obvious solution is to balance their training to avoid overfitting.

➢ However, very few progress has made but not because of the lack of trying.

➢ Some researchers believe that this is not a feasible or desirable goal since a good discriminator gives
good feedback.

➢ Some of the attention is therefore shifted for cost functions with non-vanishing gradients instead.
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Cost v.s. Image quality

➢ In a discriminative model, the loss measures the accuracy of the prediction and we use it to monitor
the progress of the training.

➢ However, the loss in GAN measures how well we are doing compared with our opponent.

➢ Often, the generator cost increases but the image quality is actually improving.

➢ We fall back to examine the generated images manually to verify the progress.

➢ This makes model comparison harder which leads to difficulties in picking the best model in a
single run. It also complicates the tuning process.
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Conclusion

➢ GANs’ applications have increased rapidly, in particular for images.

➢ GANs can be very interesting for companies.

➢ For example, GANs can generate realistic images of new medical images and image-to-image
translation can help designers draw and be more creative.

➢ Moreover, GANs can be used for data augmentation when we only have one hundred images
and we wish to have more.
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Conclusion

➢ GANs have also been developed for binary outputs (sick or not) or discrete outputs (rounded
blood pressure, rounded weight…).

➢ Benefits from this new research on tabular data are numerous, in particular for privacy purposes.

➢ For example, instead of sending confidential data from Excel sheets, hospitals can send fake
realistic data (that keeps the correlation between the features) to their partners.
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